Add initial PCA notebook
This commit is contained in:
parent
060e3386ec
commit
809b79e208
1 changed files with 22 additions and 0 deletions
22
PCA Clustering.ipynb
Normal file
22
PCA Clustering.ipynb
Normal file
|
@ -0,0 +1,22 @@
|
||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Principal Component Analysis (PCA)\n",
|
||||||
|
"\n",
|
||||||
|
"Principal Component Analysis (PCA) is a statistical method used to simplify and reduce the dimensionality of large data sets. It works by transforming a large set of variables into a smaller set of uncorrelated variables called principal components. These new variables capture the most important information from the original data, allowing for easier exploration, visualization, and analysis. In simple terms, PCA helps to identify the main features that can distinguish between different classes in a dataset, making it easier to work with the data and visualize it in a more understandable way.\n",
|
||||||
|
"\n",
|
||||||
|
"From: <https://www.datacamp.com/tutorial/principal-component-analysis-in-python>"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"language_info": {
|
||||||
|
"name": "python"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
Loading…
Reference in a new issue