Add image classification solutions

This commit is contained in:
Jake Walker 2024-06-10 09:36:50 +00:00
parent cb1f94adc1
commit 739be6b85b

View file

@ -0,0 +1,359 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Image Classification\n",
"\n",
"Simple image classification using the [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html).\n",
"\n",
"The CIFAR-10 dataset has 60,000 32x32 colour images in 10 classes (6,000 per class). These are split into 50,000 training images and 10,000 testing images.\n",
"\n",
"Here are the classes:\n",
"1. Airplane\n",
"2. Car\n",
"3. Bird\n",
"4. Cat\n",
"5. Deer\n",
"6. Dog\n",
"7. Frog\n",
"8. Horse\n",
"9. Ship\n",
"10. Truck"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import keras\n",
"import numpy as np\n",
"import os\n",
"from keras.src.datasets.cifar import load_batch\n",
"from keras import backend\n",
"from skimage.transform import resize\n",
"\n",
"classes = [\n",
" \"airplane\",\n",
" \"car\",\n",
" \"bird\",\n",
" \"cat\",\n",
" \"deer\",\n",
" \"dog\",\n",
" \"frog\",\n",
" \"horse\",\n",
" \"ship\",\n",
" \"truck\",\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the dataset 💿"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_train_samples = 50000\n",
"\n",
"x_train = np.empty((num_train_samples, 3, 32, 32), dtype=\"uint8\")\n",
"y_train = np.empty((num_train_samples,), dtype=\"uint8\")\n",
"\n",
"for i in range(1, 6):\n",
" file_path = os.path.join(\"cifar-10-batches-py\", f\"data_batch_{i}\")\n",
" (\n",
" x_train[(i - 1) * 10000 : i * 10000, :, :, :],\n",
" y_train[(i - 1) * 10000 : i * 10000],\n",
" ) = load_batch(file_path)\n",
"\n",
"file_path = os.path.join(\"cifar-10-batches-py\", \"test_batch\")\n",
"x_test, y_test = load_batch(file_path)\n",
"\n",
"y_train = np.reshape(y_train, (len(y_train), 1))\n",
"y_test = np.reshape(y_test, (len(y_test), 1))\n",
"\n",
"if backend.image_data_format() == \"channels_last\":\n",
" x_train = x_train.transpose(0, 2, 3, 1)\n",
" x_test = x_test.transpose(0, 2, 3, 1)\n",
"\n",
"x_test = x_test.astype(x_train.dtype)\n",
"y_test = y_test.astype(y_train.dtype)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exploring 🔎"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(x_train.shape)\n",
"print(y_train.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`x_train` is the actual images in the dataset. You can see they are 32x32 and the 3 is for red, green and blue values.\n",
"`y_train` is the category for each image, this is just a single number between 0 and 9."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x_train[1]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.imshow(x_train[1])\n",
"print(y_train[1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Processing 🫧\n",
"\n",
"Our neural network works with decimal numbers between 0 and 1, so we need to convert the categories into 0s and 1s. We take an array of 0s and set a 1 for the category.\n",
"\n",
"For example, the number 2 would get encoded to `[0, 0, 1, ...]`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"y_train_one_hot = keras.src.utils.numerical_utils.to_categorical(y_train, 10)\n",
"y_test_one_hot = keras.src.utils.numerical_utils.to_categorical(y_test, 10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# task: can you print out the one hot encoded label for the truck above?\n",
"print(y_train_one_hot[1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At the moment each pixel is represented by a number from 0 to 255. We also need to convert these to be between 0 and 1."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x_train = x_train.astype(\"float32\")\n",
"x_test = x_test.astype(\"float32\")\n",
"x_train = x_train / 255\n",
"x_test = x_test / 255"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x_train[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build and Train CNN 🔨"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from keras.models import Sequential\n",
"from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D\n",
"\n",
"model = Sequential()\n",
"model.add(\n",
" Conv2D(32, (3, 3), activation=\"relu\", padding=\"same\", input_shape=(32, 32, 3))\n",
")\n",
"model.add(MaxPooling2D(pool_size=(2, 2)))\n",
"model.add(Dropout(0.25))\n",
"model.add(Conv2D(64, (3, 3), activation=\"relu\", padding=\"same\"))\n",
"model.add(MaxPooling2D(pool_size=(2, 2)))\n",
"model.add(Dropout(0.25))\n",
"model.add(Flatten())\n",
"model.add(Dense(512, activation=\"relu\"))\n",
"model.add(Dropout(0.5))\n",
"model.add(Dense(10, activation=\"softmax\"))\n",
"\n",
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"hist = model.fit(\n",
" x_train, y_train_one_hot, batch_size=32, epochs=1, validation_split=0.2\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluate 🧪"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.evaluate(x_test, y_test_one_hot)[1]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"~50% accuracy... not great"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### What about for something it's not been trained on?\n",
"\n",
"Let's try and feed a picture of a cat to the model, and see what it thinks... As a reminder, the model hasn't been trained on pictures of cats."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cat = plt.imread(\"cat.jpg\")\n",
"cat_resized = resize(cat, (32, 32, 3))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.imshow(cat_resized)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"probabilities = model.predict(\n",
" np.array(\n",
" [\n",
" cat_resized,\n",
" ]\n",
" )\n",
")\n",
"probabilities"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"index = np.argsort(probabilities[0, :])\n",
"print(f\"Most likely: {classes[index[9]]}, probability={probabilities[0,index[9]]}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Additional Challenges 🏆\n",
"\n",
"- Try adding in some more layers to the neural network, adding a second `Conv2D` layer under both of the existing ones.\n",
"- Try increasing the number of `epochs` when training.\n",
"- Save/load your model with `model.save('mymodel.h5')` and `keras.models.load_model('mymodel.h5')`."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}